ME 7-1: Description des résultats

- Propagation des cofacteurs
 - Cofacteurs des résidus compensés, $Q_{\hat{v}\hat{v}}$
 - Cofacteurs des observations compensées, $Q_{\hat{\ell}\hat{\ell}}$
- Triangle avec mesure des angles
 - Calcul des cofacteurs
 - Interprétation
 - Diagonale et écarts-types
 - Corrélations

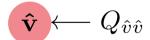
- Ecart-type a posteriori $\hat{\sigma}_0$
 - Espérance de la forme quadratique et forme quadratique effective
 - Estimation de la variance
 - Application au triangle

Nous avons réussi, nous avons des résidus et des observations compensées! (La dernière fois)

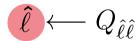
- Rappel: pourquoi compenser? (polycopié, page viii)
 - Optimiser les mesures (et les modèles)
 - Détecter une faute
 - Estimer la précision
 - Améliorer les résultats

Ensemble (pour observations):
« ODE A LA JOJE»)...

- Aujourd'hui :
 - Comment estimer la précision ?
 - Des résidus ?

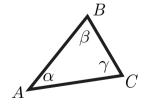


Des observations compensées ?



(jeudi) Ecart-type a posteriori ?

• Comment les appliquer au problème connu? (p.ex. au triangle)



Compensation conditionnelle

- 6. Estimation de précision (en peut différemment que dans le Chap. 3.3)
 - Rappel des « ingrédients » au départ:
 - les conditions $\mathbf{f}(\ell)$ d'observation ℓ , avec leur écartes de fermeture $\mathbf{w} = \mathbf{f}(\ell)$
 - forme linéaire des conditions $\mathbf{B} = \partial \mathbf{f}(\ell)/\partial \ell$,
 - modèle stochastique des observations $\mathbf{Q}_{\ell\ell}$
 - Rappel des résultats:
 - équation (3.10) qui relie les mesures dans le modèle fonctionnel (écartes de fermeture w) et le modèle stochastique avec les résidus compensés û

$$\hat{\mathbf{v}} = \mathbf{Q}_{\ell\ell} \mathbf{B}^T \left(\mathbf{B} \mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \cdot \mathbf{w}$$
 (3.10)

correction de observations:

$$\hat{\ell} = \ell - \hat{\mathbf{v}} \tag{3.11}$$

EPFL Compensation conditionnelle

- 7. Estimation de précision (en peut différemment que dans le Chap. 3.3)
 - L'idée principale :
 - Faire usage d'équation (3.10), qui relie les mesures ℓ dans le modèle fonctionnel (écartes de fermeture) et le modèle stochastique avec les résidus compensés

$$g\left(\mathbf{w}, \mathbf{B}, \mathbf{Q}_{\ell\ell}\right) \longrightarrow \hat{\mathbf{v}}$$

$$\hat{\mathbf{v}} = \underbrace{\mathbf{Q}_{\ell\ell}\mathbf{B}^{T} \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^{T}\right)^{-1} \cdot \mathbf{w}}_{g()} \qquad (3.10)$$

- 2. Appliquer la propagation de variance pour cette fonction
- En d'autres termes : si ℓ change (un peu), comment û change?
 - Mathématiquement on pourrait exprimer ça comme: $\frac{\delta \hat{\mathbf{v}}}{\delta \ell} = \frac{\partial g(\ell)}{\partial \ell}$
 - Quelle partie de (3.10) dépend de ℓ ?

Compensation conditionnelle

- 8. Estimation de précision des résidus
 - En d'autres termes : si ℓ change, comment $\hat{\mathbf{v}}$ change?
 - Nous admettons que ${f w}$ dépend de ℓ , car ${f w}={f f}(\ell)$
 - ${\bf B}$ dépend également de ℓ , mais seulement au deuxième ordre ... que nous ignorons!
 - 1. Alors si $\hat{\mathbf{v}} = \underbrace{\mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}}_{\mathbf{G}} \cdot \mathbf{w}$
 - 2. Leur variation par rapport d' ℓ : $\frac{\delta \hat{\mathbf{v}}}{\delta \ell} = \mathbf{G} \cdot \left(\frac{\partial \mathbf{f}(\ell)}{\partial \ell}\right)$

$$\longrightarrow \delta \hat{\mathbf{v}} = \mathbf{G} \cdot \mathbf{B} \, \delta \ell$$

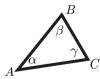
Donne la relation de base pour la propagation de la variance

EPFL Compensation conditionnelle

- Estimation de précision des résidus
 - Appliquer la propagation de variance au $\delta \hat{\mathbf{v}} = \mathbf{G} \cdot \mathbf{B} \, \delta \ell$
 - En générale : $\mathbf{Q}_{uu} = \mathbf{F} \mathbf{Q}_{\ell\ell} \mathbf{F}^T$

■ En particulier (ici) :
$$\mathbf{Q}_{\hat{v}\hat{v}} = \underbrace{\mathbf{G}\mathbf{B}}_{\mathbf{F}} \mathbf{Q}_{\ell\ell} \underbrace{\mathbf{B}^T \mathbf{G}^T}_{\mathbf{F}^T}$$
$$\mathbf{Q}_{\hat{v}\hat{v}} = \underbrace{\mathbf{Q}_{\ell\ell} \mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \left(\mathbf{B}\mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)}_{\mathbf{G}} \underbrace{\left(\mathbf{B}\mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \mathbf{B}\mathbf{Q}_{\ell\ell}}_{\mathbf{G}^T}$$
$$\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell} \mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \mathbf{B}\mathbf{Q}_{\ell\ell}$$

- Comment l'appliquer ?
 - Example de triangle ...

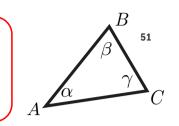


Exemple de triangle en compensation conditionnelle $\begin{pmatrix} \ell_{\alpha} = 61.341 \, \mathrm{gon} \\ \ell_{\beta} = 99.658 \, \mathrm{gon} \\ \ell_{\gamma} = 38.986 \, \mathrm{gon} \end{pmatrix}_{A}$ **EPFL**

$$\ell_{\alpha} = 61.341 \text{ gon}$$

$$\ell_{\beta} = 99.658 \text{ gon}$$

$$\ell_{\gamma} = 38.986 \text{ gon}$$



- Estimation de précision des résidus

 - Cofacteurs des résidus compensés

• Modèle stochastique
$$\mathbf{Q}_{\ell\ell} = \mathbf{I}_3$$

• Résidus compensés (dernière fois) $\hat{\mathbf{v}} = \mathbf{I}_3 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} (3)^{-1} \cdot \mathbf{w} = \begin{bmatrix} w/3 \\ w/3 \\ w/3 \end{bmatrix}$
• Cofacteurs des résidus compensés

$$\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}\mathbf{B}^T\mathbf{Q}_{\ell\ell}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} (3)^{-1} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Interprétation $\mathbf{Q}_{\hat{v}\hat{v}}$
 - $q_{\hat{v}_{\alpha}}^2 = q_{\hat{v}_{\beta}}^2 = q_{\hat{v}_{\gamma}}^2 = \frac{1}{3} \longrightarrow \sigma_{\hat{v}_{\alpha}} = \sigma_{\hat{v}_{\beta}} = \sigma_{\hat{v}_{\gamma}} = \frac{1}{\sqrt{3}}$
 - Hors diagonal (p. ex.) $q_{\hat{v}_{\alpha}}q_{\hat{v}_{\beta}} = \frac{1}{\sqrt{1}\sqrt{1}} = 1 \longrightarrow 100\%$
 - les résidus compensés sont égaux, dont entièrement corrélés.

EPFL Compensation conditionnelle

- 10. Estimation de précision de observations compensées
 - Selon (3.11): $\hat{\ell} = \ell \hat{\mathbf{v}}$
 - 1. Variation

$$\delta \hat{\ell} = \underbrace{\left(\mathbf{I} - \underbrace{\mathbf{Q}_{\ell\ell} \mathbf{B}^T \left(\mathbf{B} \mathbf{Q}_{\ell\ell} \mathbf{B}^T\right)^{-1}}_{\mathbf{G}} \mathbf{B}\right)} \delta \ell$$

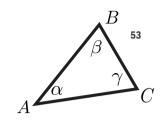
Cofacteurs 2.

$$\begin{aligned} \mathbf{Q}_{\hat{\ell}\hat{\ell}} &= \mathbf{H}\mathbf{Q}_{\ell\ell}\mathbf{H}^T \\ &= \left(\mathbf{I} - \mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}\mathbf{B}^T\right)\mathbf{Q}_{\ell\ell} \left(\mathbf{I} - \mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}\mathbf{B}\mathbf{Q}_{\ell\ell}\right) = \dots \\ &\cdots &= \mathbf{Q}_{\ell\ell} - \underbrace{\mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}\mathbf{B}\mathbf{Q}_{\ell\ell}}_{\mathbf{Q}_{\hat{v}\hat{v}}} \end{aligned}$$
 avant compensation
$$\mathbf{Q}_{\ell\ell} = \underbrace{\mathbf{Q}_{\hat{\ell}\hat{\ell}} + \mathbf{Q}_{\hat{v}\hat{v}}}_{\mathbf{Q}_{\hat{v}\hat{v}}} \text{après compensation}$$

ullet En langage simplifié $\Longrightarrow \mathbf{Q}_{\hat{\ell}\hat{\ell}} \ll \mathbf{Q}_{\ell\ell}$

objectif atteint: améliorer les résultats!

EPFL Exemple de triangle en compensation conditionnelle



- Estimation de précision des observations compensées:
 - Pour des résidus compensés $\mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T\right)^{-1}\mathbf{B}^T\mathbf{Q}_{\ell\ell} = rac{1}{3} \left[egin{array}{cccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{array}
 ight]$
 - Pour les observations compensées

- - Diagonal $q_{\hat{\ell}}^2 = q_{\hat{\ell}_{\alpha}}^2 = q_{\hat{\ell}}^2 = \frac{2}{3} \longrightarrow \sigma_{\hat{\ell}_{\alpha}} = \sigma_{\hat{\ell}_{\beta}} = \sigma_{\hat{\ell}_{\alpha}} = \sqrt{\frac{2}{3}} \, \sigma_{\ell_i}$
 - Hors diagonal (p. ex.)

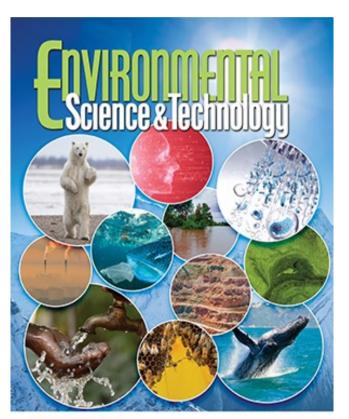
$$q_{\hat{\ell}_{\alpha}}q_{\hat{\ell}_{\beta}} = \frac{-1}{\sqrt{2}\sqrt{2}} = -\frac{1}{2} \longrightarrow -50\%$$

Pourquoi? Si l'un des angles d'un triangle augmente d'un certain montant, les deux autres doivent être réduits (de la moitié de ce montant chacun) pour respecter la condition!

EPFL Résumé

- Estimation de précision (en peut différemment que dans le Chap. 3.3)
 - A partir d'une solution pour:
 - Les résidus compensés
 - Les observations compensées
 - Nous avons appliqué nos connaissances acquises (dans Block I de ME) pour obtenir des nouvelles relations permettant d'estimer
 - Précision des résidus compensés
 - Précision des observations compensées
 - Jeudi
 - Écarte type a posteriori (Ch. 3.4 lire avant, 1p.) $\hat{\sigma}_0$
 - Quotient d'erreur moyenne (Ch. 3.5 lire avant, 1.p.) $\hat{\sigma}_0/\sigma_0$
 - Analyse des résultats en pratique (exercice)

ME: À quoi ça sert? Chimie computationnelle



Environ. Sci. Technol. 2005, 39, 8434-8441

Improving Data Quality for Environmental Fate Models: A Least-Squares Adjustment Procedure for Harmonizing

Physicochemical Properties of Organic Compounds

URS SCHENKER, MATTHEW MACLEOD, MARTIN SCHERINGER,* AND KONRAD HUNGERBÜHLER

Safety and Environmental Technology Group, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Introduction

The distribution of o media is a key factor profiles. For a syster partitioning can be solubilities: solubilities: solubilities: solubilities and solubility in oct is dominated by orgoctanol. (*R* is the gature.) If ideal solute the ratios of these so coefficients: the aid dimensionless for octanol—water part air partition coeffic

Accurate measur ficients is a challen chemicals that hav analytical technique

annuacione.

ME: À quoi ça sert? Chimie computationnelle real life après ME ...

Nestlé

University of California, Berkeley

Urs Schenker ⊘ · 2nd
Team Leader Sustainability at Nestlé

Lausanne, Vaud, Switzerland · Contact info

500+ connections

Maria Wägli is a mutual connection

- MSc EPFL 2003 (SIE)
- PhD FTH7

(The function Ω is called the Lagrangian, and 2k is the Lagrange multiplier.)

$$\Omega = v_1^2 + v_2^2 + v_3^2 - 2k(v_1 - v_2 + v_3 - w)$$
 (11)

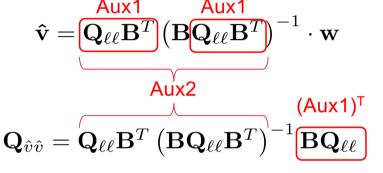
The minimizing condition is that the partial derivatives of Ω with respect to all v_i are equal to 0. This condition is fulfilled by

$$v_1 = -v_2 = v_3 = k = \frac{w}{3} \tag{12}$$

... retour à ME -- Exo 7+8!

Compensation conditionnelle programmation pour l'analyse

- Usage des matrices auxiliares pour simplifier des calculs
 - residus compensés
 - Aux1 = Kll @ np.transpose(B)
 - Aux2 = Aux1 @ np.linalg.inv(B @ Aux1)
 - vcomp = Aux2 @ w
 - covariance des résidus compensés
 - Kvcomp = Aux2 @ np.transpose(Aux1)
 - covariance des observations comp.
 - Klcomp = Kll-Kvcomp



$$\mathbf{Q}_{\hat{\ell}\hat{\ell}} = \mathbf{Q}_{\ell\ell} - \mathbf{Q}_{\hat{v}\hat{v}}$$

- Usage de fonctions auxiliaires pour simplifier l'interprétation
 - écart-types, matrice de corrération
 - [sigmavcomp, Rvcomp] = covmat2cormat(Kvcomp)
 - print('\n', 'sigmavcomp =', '\n', sigmavcomp)
 - print('\n', 'Rvcomp =', '\n', Rvcomp)

$$\sigma_{v_i}, \mathbf{R} \longleftarrow \mathbf{Q}_{\hat{v}\hat{v}}$$

EPFL Compensation conditionnelle programmation pour l'analyse

- Observations de types différents
 - on renonce souvent à l'utilisation de cofacteurs
 - Implicitement, $\sigma_0 = 1$
 - dans cette situation

$$lackbox{ t P} = ext{np.linalg.inv(Kll)} \qquad lackbox{ t P} = old{ t K}_{
ho
ho}^{-1}$$

$$\mathbf{P} = \mathbf{K}_{\ell\ell}^{-1}$$

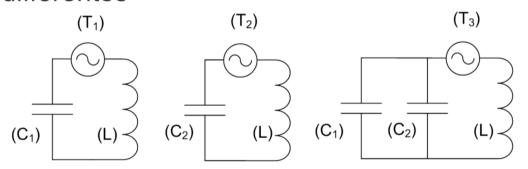
- Quetient d'erreur moyenne
 - théorie chapitre 3.2 et 3.3 (plus tard)

$$rac{\hat{\sigma}_0}{\sigma_0} = \sqrt{rac{\hat{\mathbf{v}}^T \, \mathbf{K}_{\ell\ell}^{-1} \hat{\mathbf{v}}}{r}}$$

- résultats de la minimisation globale
- le rapport global des écarts-types a posteriori / a priori pour tous les types de mesures
 - Qglob = np.sqrt((np.transpose(vcomp) @ P @ vcomp)/r)

Compensation conditionnelle circuit oscillant – ex. 8

 But: déterminer la capacité de deux condensateurs (C₁ et C₂) avec les mesures différentes



$$T_i = 2\pi \sqrt{L \cdot C_i}$$
$$L = \text{const.}$$

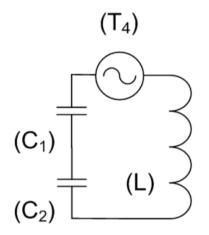
measures \ circuit	1	2	3
Capacités	C ₁	C_2	$(C_1 + C_2)$
Périodes	T ₁	T_2	T ₃

Compensation conditionnelle circuit oscillant – ex. 8

- Procédé de base:
 - 1. sur papier svp à formuler!
 - les observations (vecteur) et leur modèle stochastique (matrice)
 - les conditions
 - les conditions en forme linéaire?
 - 2. <u>vérifier</u> (avec le code résolue)
 - 3. <u>interpréter</u> les résultats
 - différences entre C_i compensés et C_i mesurés en direct
 - écart-type de valeurs compensés C_i
 - corrélation des valeurs compensées C_i
 - quotient global

Compensation conditionnelle circuit oscillant – ex. 8

- Procédé des modifications :
 - 1. Ajouter <u>une mesure de période</u> (circuit 4)
 - en adaptant sur papier
 - Attention: $\frac{1}{C_1} + \frac{1}{C_2}$
 - en adaptant le code!



- 2. Considérer L comme observation (dans les circuits 1-4)
 - en adaptant *sur papier*
 - en adaptant le code!

EPFL Ecarte-type *a posteriori*

- Rappel (statistique de base)
 - Incertitude de la moyenne \bar{y}
 - Estimateur non-biaisé

$$s = \sigma_{\bar{y}} = \sqrt{\frac{\sum\limits_{i=1}^{n} (y_i - \bar{y})^2}{(n-1)}}$$

- Compensation conditionnelle
 - Différences
 - d'autre type des conditions
 - les observations pas avec la même précision

$$\hat{\sigma}_0 = \sqrt{rac{\hat{\mathbf{v}}^T \, \mathbf{P} \hat{\mathbf{v}}}{r}}$$

- Similitudes
 - minimum somme des résidus carrés
 - surdétermination (pour la moyenne r = n 1)

$$\Omega = \mathbf{v}^T \mathbf{P} \mathbf{v} \longrightarrow \min.$$

Ecarte-type *a posteriori*

- Principe idée de dérivation
 - Résultat $\hat{\Omega} = \hat{\mathbf{v}}^T \mathbf{P} \hat{\mathbf{v}}$
- On espère obtenir $E\{\hat{\Omega}\} = E\left\{trace\left(\hat{\mathbf{v}}^T\mathbf{P}\hat{\mathbf{v}}\right)\right\} = \dots$
 - On fait usage de
 - la trace un opérateur commutatif
 - P pas stochastique → à l'extérieur d'espérance

 - $\mathbf{K}_{\hat{v}\hat{v}} = \sigma_0^2 \cdot \mathbf{Q}_{\hat{v}\hat{v}}$
 - $\mathbf{P} \mathbf{Q}_{\hat{v}\hat{v}} = \mathbf{Q}_{\ell\ell}\mathbf{B}^T \left(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T
 ight)^{-1}\mathbf{B}^T\mathbf{Q}_{\ell\ell}$
 - $\mathbf{P} = \mathbf{Q}_{\ell\ell}^{-1}$
 - $\mathbf{P} \cdots = \sigma_0^2 \cdot trace \left(\left(\mathbf{B} \mathbf{Q}_{\ell\ell} \mathbf{B}^T \right)^{-1} \cdot \mathbf{B} \mathbf{Q}_{\ell\ell} \mathbf{B}^T \right) = \sigma_0^2 \cdot trace \left(\mathbf{I} \right)$
 - $\bullet = \sigma_0^2 \cdot r$
 - Si le résultat = espérance $\implies \hat{\sigma}_0 = \sqrt{\frac{\hat{\mathbf{v}}^T \, \mathbf{P} \hat{\mathbf{v}}}{r}}$

EPFL Quotient global $\frac{\hat{\sigma}_0}{\sigma_0}$

- Erreur moyenne
 - sans dimension!
- Indique
 - sont le(s) modèle(s) et les observations adéquate ?
 - Avec sigma0 / poids unitaires

$$\frac{\hat{\sigma}_0}{\sigma_0} = \sqrt{\frac{\hat{\mathbf{v}}^T \mathbf{K}_{\ell\ell}^{-1} \hat{\mathbf{v}}}{r}}$$

Comment ?

$$\hat{\sigma}_0 = \sqrt{\frac{\hat{\mathbf{v}}^T \mathbf{P} \hat{\mathbf{v}}}{r}}$$

$$\hat{\sigma}_0 = \sqrt{rac{\hat{\mathbf{v}}^T \, \mathbf{Q}_{\ell\ell}^{-1} \hat{\mathbf{v}}}{r}}$$

$$\hat{\boldsymbol{\sigma}}_0 = \sqrt{\frac{\hat{\mathbf{v}}^T \, \sigma_0^{-2} \mathbf{K}_{\ell\ell}^{-1} \hat{\mathbf{v}}}{r}}$$

>1 • trop optimiste

< 1 • trop pessimiste

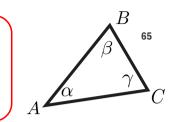
Analyse - exemple de triangle

$$\ell_{\alpha} = 61.341 \text{ gon}$$

$$\ell_{\beta} = 99.658 \text{ gon}$$

$$\ell_{\gamma} = 38.986 \text{ gon}$$

$$A$$



Avant

$$\begin{bmatrix} \hat{v}_{\alpha} \\ \hat{v}_{\beta} \\ \hat{v}_{\gamma} \end{bmatrix} = \begin{bmatrix} w/3 \\ w/3 \\ w/3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$$
mgon

$$\hat{\sigma}_0 = \sqrt{\frac{\hat{\mathbf{v}}^T \mathbf{P} \hat{\mathbf{v}}}{r}} = \sqrt{\frac{w^2}{3}} = \frac{|w|}{\sqrt{3}} = \frac{15}{1.732} = 8.6 \text{ mgon}$$

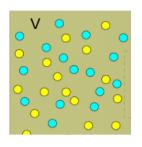
- je le compare à quoi?
- sigma0 n'est suivant pas définit explicitement ...
- ... alors je fais quoi?

ME 7-2 : Description des résultats

- Préférer sigma a priori (σ_0) ou a posteriori $(\hat{\sigma}_0)$?
 - Préanalyse : pas de valeur *a posteriori* (seulement σ_0)
 - Nouveau procédé : pas de valeur a priori
 - Quell valeur exprime la meilleure connaissance ?

- Quotient d'erreur moyenne
 - Ecart-type a posteriori pour $P=K_{\ell\ell}^{-1}$, donc pour $\sigma_0=1$
 - Dans la forme quadratique, les unités des résidus et des poids s'annulent
 - Utile surtout pour des mesures de types différents
 - Exemple connu : quotient global ($\hat{\sigma}_0/\sigma_0$) le gaz parfait
- Triangle avec mesure des angles et de côtés
 - Exemple du polycopié, pp. 57-60

ME 7-3: Gaz perfait - suite



- 2em étape : modèle stochastique des résultats
 - Sigmavcomp et Rvcomp, sigmalcomp et Rlcomp, QuotientGlobal
- 3em étape : autre modèle stochastique $K_{\ell\ell}$
 - Modifier σ_p , σ_V ou σ_T et observer les changements sur \hat{v} , $R_{\hat{v}\hat{v}}$, $\hat{\sigma}_0/\sigma_0$
- Fonction des observations compensées $\mathbf{y} = \mathbf{f}(\hat{\ell})$
 - Exemple : estimer la constate du gaz : $c = P \cdot V/T$ et σ_c
 - Option : estimer c et σ_c par pondération Alternative partielle à la pondération des observations :
 - calculer $c_i=\ell_{p_i}\cdot\ell_{V_i}/\ell_{T_i}$ et σ_{c_i} pour chaque état, puis pondérer Cas spécial: erreurs relatives constantes pour $P,\,V,\,T\,\longrightarrow\,$ moyenne arithmétique